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The flow of liquid metal in a magnetic field may become almost two-dimensional
because the magnetic field inhibits velocity variations along the field lines. Two-
dimensionality must break down near rigid boundaries to satisfy no-slip boundary
conditions, leading to a quasi-two-dimensional flow comprising a two-dimensional
core between Hartmann boundary layers. Flow in the Hartmann layers is dominated
by viscosity and the Lorentz force. Pothérat, Sommeria & Moreau (J. Fluid Mech.
vol. 424, 2000, p. 75, referred to herein as PSM) recently proposed a two-dimensional
equation for the vertically averaged horizontal velocity to describe such flows. Their
treatment extends previous work to account for inertial corrections (such as Ekman
pumping) to the flow in the Hartmann layers. The inertial corrections lead to
extra nonlinear terms in the vertically averaged equations, including terms with
mixed spatio-temporal derivatives, in addition to the algebraic drag term found
previously. The present paper shows that many of these terms coincide with a
previously postulated model of two-dimensional turbulence, the anticipated vorticity
method, and a subsequent modification restoring linear and angular momentum
conservation that might be described as an anticipated velocity method. A fully
explicit version of PSM’s equation is derived, with the same formal accuracy but
no spatio-temporal derivatives. This explicit equation is shown to dissipate energy,
although enstrophy may increase. Numerical experiments are used to compare the
effect of the various different equations (without linear drag or forcing) on both
laminar and turbulent initial conditions. The mixed spatio-temporal derivatives in
PSM’s original equation lead to a system of differential-algebraic equations, instead
of ordinary differential equations, after discretizing the spatial variables. Such systems
may still be solved readily using existing software. The original and explicit versions
of PSM’s equation give very similar results for parameter regimes representative of
laboratory experiments, and give qualitatively similar results to the anticipated velocity
method. The anisotropic diffusion of vorticity along streamlines that is present in all
equations studied except the Navier–Stokes equations has comparatively little effect.
The additional terms in PSM’s equation, and also the anticipated velocity method,
that arise from Ekman pumping are much more significant. These terms lead to an
outward transport of vorticity from coherent vortices, so solutions of equations with
these extra terms appear much more organized and have less fine-scale structure than
solutions of the Navier–Stokes equations, or even the anticipated vorticity method,
with the same initial conditions. This has implications for the extent to which the self-
organizing behaviour and appearance of global modes seen in laboratory experiments
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with thin liquid-metal layers and magnetic fields may be attributed to self-organizing
properties of the unmodified two-dimensional Navier–Stokes equations.

1. Introduction
Perhaps the original motivation for studying the two-dimensional Navier–Stokes

equations and two-dimensional turbulence (Kraichnan & Montgomery 1980; Frisch
1995; Tabeling 2002) is as a model for the large-scale behaviour of the atmosphere and
oceans. Although the latter are more correctly described by geostrophic turbulence, the
qualitative behaviour is very similar (Rhines 1979; Salmon 1998). Another motivation
is as an interesting application of statistical mechanics (Kraichnan 1967; Rhines 1979;
Robert & Sommeria 1991; Miller, Weichman & Cross 1992; Tabeling 2002). Originally
studied only theoretically and computationally, two-dimensional turbulence has since
been realized experimentally in soap films (as reviewed by Kellay & Goldburg 2002),
in liquid metals permeated by magnetic fields (as reviewed by Moreau 1998, 1990),
and also in non-neutral plasmas.

Meanwhile, various equations resembling the two-dimensional Navier–Stokes
equations have been derived to describe thin fluid layers, with either free surfaces or
rigid lids, by averaging the relevant three-dimensional equations across the layer (e.g.
Green & Naghdi 1976; Miles & Salmon 1985; Camassa, Holm & Levermore 1996;
Dellar 2003). The purpose of this paper is to compare the layer-averaged equation
obtained by Pothérat, Sommeria & Moreau (2000, hereafter referred to as PSM),
to describe a thin layer of liquid metal in a perpendicular magnetic field, with a
model for two-dimensional turbulence called the anticipated vorticity method (AVM)
devised by Sadourny & Basdevant (1981, 1985, see also Basdevant & Sadourny 1983),
and its extension to the ‘anticipated velocity method’ by Benzi, Succi & Vergassola
(1990, 1992, see also Dellar 2004).

Magnetic fields may be used to simulate two-dimensional turbulence in electrically
conducting fluids because the Lorentz force has the effect of suppressing velocity
variations in the direction of the magnetic field. In the parameter regime typical
for liquid metals on laboratory scales this suppression takes the form of degenerate
Alfvén waves propagating along the field lines to eliminate velocity variations (see § 2).
The flow therefore tends to become approximately two-dimensional, and independent
of the coordinate aligned with the magnetic field (Roberts 1967; Alemany et al. 1979;
Sommeria & Moreau 1982; Davidson 1995, 2001).

Kolesnikov & Tsinober (1974) made some of the first experimental measurements
showing suppression of three-dimensional turbulence by a magnetic field. They used
a mercury analogue of a wind tunnel, a rectangular duct 50 mm × 60 mm in cross-
section through which mercury flowed at about 0.2 m s−1. A grid at the inlet generated
three-dimensional turbulence. By inferring velocity fluctuations from electrodes at the
walls, they saw a transition from the k−5/3 energy spectrum characteristic of three-
dimensional turbulence with the device in a weak 0.08 T magnetic field, to a k−3

energy spectrum characteristic of two-dimensional turbulence when they applied a
stronger 0.8 T magnetic field. This transition to an apparently two-dimensional flow
was supported by measurements of the two different flows’ transport properties using
a passive tracer (indium) injected at one point just behind the grid, and sampled
downstream through a line of narrow tubes across the duct.
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However, Alemany et al. (1979) later conducted similar experiments in a larger
cylindrical vessel, 0.2 m in internal diameter and 2.7 m high, filled with mercury and
placed in a magnetic field of up to 0.2 T. Grid turbulence was generated by a moving
grid driven through the mercury at up to 0.8 m s−1. They observed transitions from
k−5/3 to k−3 energy spectra even for almost isotropic flows that were far from two-
dimensional. They attributed this change in the energy spectrum to Joule dissipation
extracting energy at all scales, modifying Kolmogorov’s hypothesis (leading to a k−5/3

spectrum) that dissipation is negligible in the inertial range and acts only at very high
wavenumbers. Their modified version of Kolmogorov’s argument leads to a k−3 energy
spectrum even for three-dimensional flows. For further discussion see Sommeria &
Moreau (1982).

A second series of experiments begun by Sommeria (1986, 1988) used a closed
domain, 12 cm square in the horizontal plane, containing a 2 cm deep layer of mercury
with a vertical magnetic field to enforce two-dimensionality. Instead of pumping
mercury through the device as above, these flows are forced electromagnetically by
injecting current through electrodes at the lower boundary. The electrodes have the
effect of imposing a divergence-free horizontal body force in the vertically averaged
flow (see equation (2.4) below), although they do also drive three dimensional
behaviour in small regions around the electrodes (Sommeria 1988). This device
was used initially by Sommeria (1986) to study the inverse energy cascade in two-
dimensional turbulence, by forcing the flow at small lengthscales through a regular
array of 36 electrodes in the lower boundary. Sommeria observed a k−5/3 energy
spectrum when the experimental parameters were such that boundary friction limited
the inverse cascade. For smaller effective frictions the inverse cascade extended
to fill the domain, resulting in a globally rotating coherent mode of the kind
predicted by Kraichnan (1967). Sommeria (1988) subsequently used the same device
to study the behaviour of axisymmetric vortices driven by current injected at a single
electrode. A more recent series of experiments in a circular domain has used currents
injected through a ring made up of many closely spaced electrodes to drive an
axisymmetric shear flow, that in turns develops into a turbulent shear layer through
Kelvin–Helmholtz instabilities (Moreau 1998; Alboussière, Uspenski & Moreau 1999;
Messadek & Moreau 2002). These experiments take place in a much stronger magnetic
field of up to 6 T, compared with the 1 T maximum in Sommeria’s earlier experiments.

The quasi-two-dimensionality enforced by the magnetic field in these experiments
must break down near rigid boundaries in order to satisfy no-slip boundary
conditions. For typical laboratory-scale liquid metal magnetohydrodynamics (MHD),
this transition takes place within thin boundary layers called Hartmann layers of width
O(Ha−1), where the Hartmann number Ha =B0a/

√
ρη∗ν∗ � 1, giving rise to a flow

profile as sketched in figure 1. Here a is the layer depth, B0 the imposed field strength,
and ρ the density. The fluid’s kinematic viscosity is ν∗, and its magnetic diffusivity is
η∗. An asterisk denotes dimensional values for these diffusivities. For mercury in a 1 T
magnetic field the dimensional width a/Ha of the Hartmann layer is about 40 µm,
whereas the layer depth is perhaps a centimetre in laboratory experiments. The region
between the two Hartmann layers where the velocity u ≈ uc(x, y) is approximately
horizontal and independent of z is called the core. This flow configuration develops
from impulsively started motion in a fluid with finite viscosity and resistivity through
Alfvén waves propagating away from the boundaries, leaving Hartmann layers behind
(Shercliff 1965, pp. 160–166; Moreau 1990, pp. 165–171).

The Hartmann layers are dominated by a balance between viscous and Lorentz
forces. Since the Lorentz force is linear at low magnetic Reynolds numbers, to a
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Figure 1. Hartmann layers form on walls perpendicular to the imposed magnetic field B0.
The core velocity uc decays to zero over a distance a/Ha =

√
ρη∗ν/B0 to satisfy the no-slip

boundary condition on the walls.

first approximation the Hartmann layers respond linearly to the core flow. This led
Sommeria & Moreau (1982) to derive two-dimensional equations for the vertically
averaged horizontal velocity that included a linear friction term due to the Hartmann
layers occurring on rigid surfaces perpendicular to the imposed magnetic field (see
also Frank, Barleon & Muller 2001; Bühler 1996):

∂t u + u · ∇ u + ∇ p = ν∗∇2u +
1

tH
(u0 − nu), (1.1)

where tH = a2/(ν∗Ha) is the Hartmann braking time, and an overbar denotes a vertical
average across the layer. Also, n denotes the number of Hartmann layers, so n= 2
for a flow confined between two rigid walls as in figure 1, while n= 1 for a flow
with an upper free surface. Since mercury rapidly forms a rigid oxide coating when
exposed to air, genuine free surface flows only arise for experiments conducted in
inert gases (Sommeria 1986). The linear algebraic drag term −u/tH represents the
leading-order effect of the Hartmann boundary layers on the core flow. Exactly the
same kind of effective equation arises in Hele-Shaw flow of viscous fluid between
two parallel closely spaced plates, though in Hele-Shaw flow the velocity profile
across the layer is parabolic, like Poiseuille flow, rather than the two exponential
boundary layers with a uniform core sketched in figure 1. The driving velocity u0

in (1.1) arises from current injection at the boundaries (see § 2) and vanishes for
electrically insulating boundaries. A linear drag appears under the name of ‘Rayleigh
friction’ in many approximate models arising in geophysical fluid dynamics (Salmon
1998), a comparison made previously by Sommeria (1986), while a driving term like
u0/tH appears as the ‘Neptune effect’ in some ocean models for flow over varying
topography (Holloway 1992).

Equation (1.1) is formally valid in the limit when the Hartmann number Ha and a
second dimensionless quantity N =B2

0a/(ρη∗U ) are both large. This second quantity
is usually called the interaction parameter, and estimates the ratio of the Lorentz
force to inertia. By contrast, the square of the Hartmann number estimates the ratio
of Lorentz to viscous forces. The two parameters are thus related by

Re‖ N = Ha2, (1.2)
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where Re‖ = Ua/ν∗ is the usual fluid Reynolds number based on the layer depth a,
the lengthscale parallel to the magnetic field. To give some idea of the orders of
magnitude that arise in the laboratory experiments described above, consider a layer
of mercury 10 cm wide and 1 cm deep, flowing at 10 cm s−1 in a 1 T magnetic field.
The relevant parameters are then

Ha = 260, N = 7.8, δ = 0.1, tH = 3.3 s, ν∗ = 10−7m2 s−1, (1.3)

where δ is the aspect ratio. While Ha � 1 seems amply satisfied, the assumption that
N � 1, or that inertia is weak, is rather more questionable. In fact Sommeria (1988)
attributed the spreading of his axisymmetric vortices beyond the amount predicted by
the model (1.1) to inertially driven recirculation (Ekman pumping) in the Hartmann
layers.

For this reason PSM recently derived a more complicated model that extends the
previous equation (1.1) to include the leading-order inertial correction to the dominant
Lorentz–viscous force balance in the Hartmann layers. By vertically averaging these
inertial corrections they obtained the equation

∂t u + u · ∇u + ∇p = ν∗∇2u +
1

tH
(u0 − nαu) +

ntH

Ha2

(
7
36

Du + 1
8
∂t

)
u · ∇u, (1.4)

where α = 1 + n/Ha , and the linear operator Du is defined by

Du F = u · ∇F + F · ∇u. (1.5)

For future convenience we introduce a dimensionless version of (1.4),

∂t u + u · ∇u + ∇p = ν∇2u + κ(u0 − u) + β
(

7
36

Du + 1
8
∂t

)
u · ∇u, (1.6)

and suppress the overbars on u and p in the dimensionless equation. The parameter
ν = ν∗δ/(Ua) is a dimensionless viscosity, equal to the reciprocal of the Reynolds
number based on a horizontal lengthscale a/δ. Since the kinematic viscosity ν∗ for
mercury is about ten times smaller than for water, even 10 cm sized laboratory
experiments may attain high fluid Reynolds numbers.

We absorb the factor of nα in front of u in (1.4) into the dimensionless drag
coefficient κ = (1 + nα)te/tH to simplify later calculations, and redefine u0 by a factor
of (1+nα)−1 to compensate. The dominant part te/tH of the drag coefficient is the ratio
of a horizontal eddy turnover time te = a/(δU ) to the Hartmann braking time tH. The
reciprocal quantity tH/te was denoted Rh by Sommeria (1986), although Sommeria
considered a forced–dissipative system (see § 2 below) in which the velocity scale U

was set by balancing the forcing from current injection against Hartmann braking,
instead of being set by the initial conditions. The final parameter β = nδ/(NHa)
combining the Hartmann and interaction parameters measures the significance of
inertia in the Hartmann layers. Assuming rigid upper and lower boundaries (n = 2)
and parameter values from (1.3) above, the combinations appearing in (1.6) are

ν =
δ N

Ha2
= 10−5, β =

nδ

NHa
= 10−4, κ =

te

tH

(
1 +

n

Ha

)
=

N

δ Ha

(
1 +

n

Ha

)
= 0.3.

(1.7)

As n and the aspect ratio δ are fixed by the geometry of an experiment, the three
parameters ν, β , and κ cannot be varied independently. The two independent control
parameters are Ha and N , which depend on the applied magnetic field and injected
current.
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Since ∇ · u =0, we may introduce a streamfunction ψ such that u = (−ψy, ψx, 0).
The vorticity vector is then ω = ∇×u = (0, 0, ω), where ω = +∇2ψ is the only non-zero
component. The choice of a + sign in the relation between ω and ψ is the usual
convention in both MHD (e.g. Verron & Sommeria 1987) and geophysical fluid
dynamics (e.g. Salmon 1998). PSM’s equation (1.6) thus becomes

∂tω + [ψ, ω] = ν∇2ω + κ(ω0 − ω) + 1
8
β∂t [ψ, ω]

+ 7
36

β{[ψ, [ψ, ω] ] + [ψy, ωψx] + [ωψy, ψx]}, (1.8)

where [f, g] = fxgy − fygx denotes the Jacobian of two functions, so that
[ψ, ω] = u · ∇ω, and ω0 = ẑ · ∇×u0.

The purpose of this paper is to investigate the effects of the additional terms in
(1.4) and (1.6) compared with the earlier model (1.1). In particular, we compare
the properties of these extra terms with the terms appearing in the anticipated
vorticity method (AVM) previously devised by Sadourny & Basdevant (1981, 1985,
see also Basdevant & Sadourny 1983), and its extension to what might be called the
‘anticipated velocity method’ by Benzi et al. (1990, 1992, see also Dellar 2004). The
anticipated vorticity method postulates the replacement

∂tω + u · ∇(ω − λu · ∇ω) = 0, (1.9)

for the usual two-dimensional inviscid vorticity equation ∂tω+u · ∇ω = 0. It is intended
to model two-dimensional turbulence at high Reynolds numbers, i.e. small viscosities
ν. The extra term proportional to the positive parameter λ has various properties, like
conserving energy while monotonically dissipating enstrophy (see § 3) and preserving
steady states, that make it attractive for modelling two-dimensional turbulence, which
is characterized by a much more rapid selective decay of enstrophy than energy. In
numerical experiments, Vallis & Hua (1988) found that the AVM performed as well
or better than a conventional eddy viscosity parametrization, and was competitive
with other turbulence models of similar complexity.

Equation (1.9) may be rewritten as ∂tω + u · ∇ω = λ∇ · (uu · ∇ω) which corresponds
to a well-posed but degenerate (and anisotropic) parabolic equation with diffusivity
tensor λuu that only diffuses vorticity along streamlines (see § 3). This anisotropic
diffusion of vorticity causes enstrophy to decay, and energy to be conserved. The
name ‘anticipated vorticity’ arises because ω − λu · ∇ω in equation (1.9) approximates
the vorticity ω at a later time t + λ when λ is small (Sadourny & Basdevant 1981;
Vallis & Hua 1988). Thus equation (1.9) resembles a numerical predictor–corrector
timestepping scheme, in which the expression −u · ∇ω for ∂tω is evaluated at the end
of a timestep of length λ. After restoring the usual viscous term, equation (1.9) may
also be rewritten as

∂tω + [ψ, ω] = ν∇2ω + λ[ψ, [ψ, ω] ], (1.10)

where the extra λ[ψ, [ψ, ω] ] term coincides with the first term inside the braces {·}
in equation (1.8).

The anticipated vorticity method bears some resemblance to the Leray turbulence
models (Leray 1934, see also Geurts & Holm 2003),

∂t u + 〈u〉 · ∇u + ∇p = ν∇2u, (1.11)

where 〈u〉 is some smoothed version of u, for instance the result of applying a
Gaussian filter to u. The quantity ω − λu · ∇ω in equation (1.9) is intended to model
the unsmoothed combination ω + ω′ appearing in the derivation (see § 3), so the
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anticipated vorticity method also advects with a smoother velocity field than the
advected quantity. In particular, it shares the shortcoming of the Leray model that
the associated momentum equation for u cannot be written as the divergence of a
symmetric stress tensor, and so cannot be readily expressed in kinetic theory terms
(see § 4). This led Benzi et al. (1990, 1992) to propose the alternative

∂t u + ∇ · {uu + pI − λ (u(u · ∇u) + (u · ∇u)u)} = 0, (1.12)

which may also be written as

∂t u + u · ∇ u + ∇p = λ{Du(u · ∇ u) + u∇ · (u · ∇ u)}. (1.13)

The Du(u · ∇ u) term is identical to that in equation (1.6). Although the other
additional terms differ, the qualitative behaviour of the two equations (1.6) and
(1.13) is shown below to be quite similar. In streamfunction–vorticity form, equation
(1.13) with an additional Newtonian viscous term becomes

∂tω + [ψ, ω] = ν∇2ω + λ{[ψ, [ψ, ω] ] + [ψy, ωψx] + [ωψy, ψx] + 2∇ · ([ψy, ψx] ∇ψ)},
(1.14)

using the formulae ∇ · (u · ∇u) = 2[ψy, ψx], and ẑ · ∇×(F u) = ∇ · (F∇ψ) for any
F (x, y, t). The first three terms inside the braces {·} in equation (1.14), arising from
∇×Du(u · ∇u), coincide with the terms inside the braces {·} in equation (1.8).

In the subsequent sections we first outline the derivations of the PSM and AVM
equations, compare their properties in more detail, and study their effect on linear
vorticity waves. Using numerical experiments, we compare the effects of these models,
and some alternative versions, on a deterministic two-dimensional flow exhibiting
the rolling up of shear layers, and the evolution of two-dimensional turbulence from
random initial conditions. The PSM equation is implicit in time, like the Green–
Naghdi (1976) and dispersive shallow water MHD (Dellar 2003) equations that also
arise from layer-averaging, due to the ∂t [ψ, ω] term on the right-hand side of equation
(1.8). This property poses no great obstacle to numerical solution, because the finite
system of equations obtained by discretizing the spatial dependence of ω using Fourier
series is readily formulated and solved as a system of differential-algebraic equations
(DAEs) rather than ordinary differential equations.

The linear drag and forcing terms in the PSM equation are very prominent in
laboratory parameter regimes, as shown by the value te/tH ≈ 0.3 estimated above.
In other words, the Hartmann braking time is only three eddy turnover times, at
least for large eddies that fill the domain. This is partly because strong magnetic
fields are desirable to enhance the two-dimensionality of the core flow, but strong
fields simultaneously increase the drag from the Hartmann layers. For this reason
the shallow-layer laboratory experiments described above are all forced-dissipative
systems that rely upon substantial driving from injected currents to overcome
Hartmann braking. Rather than try to untangle the effects of the additional terms
in the PSM model from small differences in solutions that are dominated by forcing
and dissipation, we shall just discard the linear drag and forcing terms from (1.6), the
terms that coincide with those obtained previously by Sommeria & Moreau (1982),
and investigate the effect of the extra terms in the PSM model on freely decaying
turbulence. Moreover, the anticipated vorticity method and its variations that we wish
to compare with the PSM model have no linear drag terms.
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2. The PSM model
The model due to PSM describes magnetohydrodynamic flow in a thin layer of

liquid metal permeated by a vertical magnetic field. The underlying three-dimensional
equations are the Navier–Stokes equation with the Lorentz force,

∂t u3 + u3 · ∇3u3 + ∇3p = ν∗∇2
3u3 + J×B, (2.1)

combined with Ohm’s law

η∗ J = −∇3φ + u3×B, (2.2)

to determine the current J = ∇×B. We use u3 for the three-dimensional velocity field,
in contrast to the u used elsewhere for the horizontal velocity only, and ∇3 to denote
the three-dimensional gradient operator. In liquid-metal magnetohydrodynamics, the
magnetic Reynolds number Rm = UL/η∗ is usually small enough to neglect variations
in the magnetic field B = B0 +O(Rm) from its applied value B0 =B0 ẑ, which we take
to be spatially uniform. The Lorentz force J×B therefore linearizes to B0 J× ẑ, and
Ohm’s law linearizes to η∗ J = −∇3φ +B0u3× ẑ, from which we deduce (Roberts 1967,
p. 137)

∂t u3 + u3 · ∇3u3 + ∇3p = ν∗∇2
3u3 − B2

0

ρη∗
∇−2

3

∂2u3

∂z2
. (2.3)

The inverse three-dimensional Laplace operator ∇−2
3 in (2.3) acquires its boundary

conditions from the normal current J · n on the boundary. The last term in (2.3) has
the effect of ‘diffusing’ away spatial variations in the z-direction (Davidson 1995). For
parameters typical of liquid metals at laboratory scales these variations diffuse very
quickly by comparison with an eddy turnover time, thus establishing a quasi-two-
dimensional flow away from no-slip boundaries (Sommeria & Moreau 1982).

Alternatively, the Fourier transform of (2.3) may be analysed in terms of wave
vectors (Alemany et al. 1979; Sommeria & Moreau 1982; Moreau 1998). Unlike
the usual case of isotropic hydrodynamic turbulence, the magnetic field imposes a
preferred direction so it is necessary to consider wave vectors rather than just scalar
wavenumbers. The Fourier interpretation of the last term in (2.3) is that resistivity
only dissipates wavenumbers inclined to the imposed magnetic field, and thus
causes three-dimensional modes to decay more rapidly than purely two-dimensional
modes. Moreover, the electrical boundary conditions on the upper and lower
boundaries have the effect of quantizing the permissible wave vectors. In the case of
insulating boundaries, the vertical wavenumber must be kz = nπ/a for some integer n

(Sommeria & Moreau 1982; Moreau 1998), so there are no ‘almost two-dimensional’
wave vectors. The resistive damping of three-dimensional modes is offset by the usual
transfer of energy between modes by the nonlinear u3 · ∇3u3 inertial term. This sets
constraints on the permissible strength of inertia, as measured by the interaction
parameter N , such that quasi-two-dimensional magnetohydrodynamics is valid for
horizontal wavenumbers k with ka � N−1/3 (Sommeria 1988).

In suitable dimensionless variables, the layer average of the horizontal components
of equation (2.1) may be rewritten as (PSM)

∂t u + u · ∇u + u′ · ∇u′ + ∇p =
Nδ

Ha2
∇2u +

N

Ha2 δ
τw +

N

Ha δ
u0, (2.4)

where u3 = (u, w) and J = ( j , jz) have been decomposed into horizontal and vertical
components. An overbar denotes a layer average, and u′ = u−u denotes the deviation
in velocity away from this average. The parameters appearing in (2.4) are the
Hartmann number Ha , as defined above, the interaction parameter N = B2

0a/(ρη∗U ),
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and the aspect ratio δ. The vertically averaged Lorentz force j× ẑ may be written as
a two-dimensional velocity field Ha−1u0, one that is determined by current injection
at the boundaries (Sommeria 1986). The remaining quantities necessary to close the
equation are the Reynolds stress u′ · ∇u′ due to vertical variations in the velocity, and
the wall stress τw.

These quantities are determined predominantly by the Hartmann layers at the
walls. In contrast to the core flow, the Hartmann layers are dominated by a balance
between viscosity and the Lorentz force. The horizontal velocity inside the Hartmann
layer is approximately

u3(x, ξ ) = uc(1 − e−ξ ) +
δ

N

[(
1
3
e−2ξ − 1

3
e−ξ + ξe−ξ

)
uc · ∇uc + 1

2
ξe−ξ ∂t uc

]
, (2.5)

where ξ = zHa is a rescaled vertical coordinate inside the Hartmann layer, and uc

denotes the velocity in the core, so that u3(x, ξ ) → uc(x) as ξ → ∞. The first and
largest term in equation (2.5) is the usual linear Hartmann layer velocity profile, as
sketched in figure 1. The other terms are inertial corrections to the dominant balance
of Lorentz, viscous, and pressure forces in the Hartmann layer.

The average velocity u is thus related to the core velocity uc appearing in
equation (2.5) by

uc =
(
1 +

n

Ha

)
u − n δ

HaN

(
5
6
u · ∇u + 1

2
∂t u

)
+ O(Ha−2N−2). (2.6)

The extra factor of nHa−1 appears because deviations from the core velocity are
confined to n Hartmann layers of width Ha−1. Equation (2.6) may be used to eliminate
uc from (2.5), and subsequently to calculate the wall stress τw and the vertically
averaged Reynolds stress u′ · ∇u′. After rescaling u and t to absorb constants, PSM
finally obtained a closed equation for the rescaled vertically averaged velocity u,

∂t u + u · ∇u + ∇p =
N δ

Ha2
∇2u +

N

Ha δ
(u0 − nαu) +

n δ

HaN

(
7
36

Du + 1
8
∂t

)
u · ∇u, (2.7)

subject to ∇ · u =0, which coincides with (1.6) above after identifying the dimensionless
groups in (1.7), and absorbing nα into the drag coefficient and u0. The linear operator
Du is defined by Du F = u · ∇F + F · ∇u as in (1.5) above.

The additional nonlinear terms on the right-hand side of (2.7) describe the effects
of inertial corrections to flow in the Hartmann layers. The easiest case to interpret
physically is an axisymmetric recirculating flow or vortex, which requires an inward
radial pressure gradient to balance the centrifugal force. This pressure gradient is
pressed into the Hartmann boundary layers, since the usual small-aspect-ratio scaling
implies that the pressure must be uniform across a boundary layer, and drives a small
radial inflow inside the Hartmann layers. By mass conservation, the inflow must be
balanced by a radial outflow in the core, giving rise to the usual recirculating flow in
a vertical plane called Ekman pumping. Since there is no net inward or outward mass
flux the Ekman pumping makes no contribution to the vertically averaged velocity u.
However, the horizontal leading-order flow is weaker in the boundary layers than in
the core, as sketched in figure 1, due to the no-slip boundary conditions. The outward
transport of the leading-order flow by the secondary flow in the core is thus larger
than the inward transport in the boundary layers, leading to a net outward transport
of the vertically averaged velocity u, despite there being no net outward component of
the velocity. This physical mechanism is well understood for axisymmetric flows, and
is responsible for the increased spreading of steady, strong vortices driven by current
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injection (Sommeria 1988; PSM). Its extension to unsteady, non-axisymmetric flows,
as captured in a layer-averaged model by the PSM equation, will be investigated in
this paper.

For axisymmetric flows that decay at infinity, the PSM equation may be rewritten
as

Γt = ν

(
Γrr − 1

r
Γr

)
+ κ(Γ0 − Γ ) − 7β

144π2

1

r3
Γ 2Γr, (2.8)

in terms of the circulation Γ given by

Γ (r, t) = 2πruθ = 2π

∫ r

0

r ′ω(r ′, t) dr ′, (2.9)

and where Γ0 is the corresponding function calculated from the forcing vorticity
ω0 as determined by the injected currents. Equation (2.8) thus follows from the
streamfunction–vorticity form (1.8) of the PSM equation by multiplying by r and
integrating. The Jacobian [ψ, ω] = 0 for axisymmetric flows, so the anisotropic
diffusion term [ψ, [ψ, ω] ] and the implicit term ∂t [ψ, ω] in the PSM equation both
vanish. Similar equations for steady axisymmetric flows were obtained by PSM, and
used to calculate the response to forcing from a point current source, as in the
experiments of Sommeria (1988).

A further change of spatial coordinate from r to s, where

s =

(
108π2

7β

)
r4, (2.10)

transforms (2.8) into

Γt + (Γ 3)s = κ(Γ0 − Γ ) + ν
96

√
3π√

7β

(
s3/2Γss + 1

2
s1/2Γs

)
. (2.11)

The (Γ 3)s term on the left-hand side arises from the outward transport of
vorticity by the Ekman pumping mechanism described above. In these axisymmetric
incompressible flows the radial velocity is zero everywhere (assuming no mass source
at the origin) but there is nevertheless a radial transport of the azimuthal velocity or
circulation. In the absence of forcing, drag, and viscosity (κ =0 and ν =0) equation
(2.11) has self-similar solutions corresponding to expanding patches of uniform
vorticity in a quiescent fluid. These solutions, and their modifications by forcing
and viscosity, will be explored in a future paper.

2.1. An explicit version of the PSM equation

Since PSM have already substituted u for uc at leading order in equation (2.6) to
calculate the first-order inertial corrections, to the same order of accuracy we may
approximate ∂t u using the Euler equation with forcing and drag, ∂t u = −(u · ∇u +
∇p′) + κ(u0 − u) + O(ν) + O(β), to obtain

∂t u +
(
1 + 1

8
βκ

)
u · ∇u + ∇p = ν∇2u + κ(u0 − u)

+ 5
72

βDu(u · ∇u) − 1
8
βDu∇p′ + 1

8
βκDuu0. (2.12)

The auxiliary pressure p′ is determined by ∇ · (u · ∇u + ∇p′) = 0 to ensure that the
approximation for ∂t u is incompressible, and will differ from the true pressure p by
corrections of O(ν) and O(β). We may obtain a simpler closed-form equation using the
alternative streamfunction–vorticity formulation from the introduction. Substituting
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the leading-order vorticity equation ωt = −[ψ, ω]+κ(ω0−ω)+O(ν)+O(β) to eliminate
the implicit ∂t [ψ, ω] term transforms (1.8) into

∂tω +
(
1 + 1

8
βκ

)
[ψ, ω] = ν∇2ω + κ(ω0 − ω) − 1

8
β[∇−2[ψ, ω], ω]

+ 5
72

β[ψ, [ψ, ω] ] + 7
36

β{[ψy, ωψx] + [ωψy, ψx]} + 1
8
βκ{[ψ, ω0] + [ψ0, ω]}, (2.13)

where ψ0 = ∇−2ω0. These two different forms will be useful for estimating the evolution
of the energy in § 5.

The implicit nature of the original PSM model is interesting, and theoretically
beneficial. As with any shallow-layer approximation, PSM’s equation cannot be
expected to remain valid for arbitrarily small horizontal lengthscales, because the small
aspect ratio assumption breaks down when kδ =O(1), k being a typical dimensionless
horizontal wavenumber. For this reason Benjamin, Bona & Mahony (1972) argued
that it is desirable for the approximate long-wave equation to have some “innocuous”
behaviour in the short-wave limit, and in particular that the decay rates and phase
speeds for linear waves should not diverge like k2 or higher powers of k as k → ∞.
The decay rate for linear waves is found in § 6 to be bounded as k → ∞ for PSM’s
equation (1.8), but to diverge as k2 for the explicit version given in equation (2.13).
However, this difference only becomes apparent for large wavenumbers with k ∼ β−1,
as shown in § 6. These wavenumbers are not resolved by the numerical experiments
reported below, so the computed solutions of the explicit and implicit versions of the
PSM equation are almost identical.

The existence of rapidly decaying fluctuations may impose a severe timestep
constraint on numerical methods. When simulating the plain Navier–Stokes equations
it is common to use some unconditionally stable numerical scheme to integrate the
viscous terms, such as Crank–Nicolson, or the “backward time stepping” used by
Verron & Sommeria (1987). Although they remain stable, these numerical schemes
usually become inaccurate for rapidly decaying modes. In particular Crank–Nicolson
causes modes that should decay very rapidly over a timestep in the original PDE
to decay hardly at all in the numerical solution, but instead to oscillate with almost
constant amplitude. Thus many numerical implementations have the effect of reducing
the decay rate of high-wavenumber modes, which is similar to the way the original
PSM equation modifies the decay rate of high-wavenumber modes compared with the
explicit version (2.13), but is hidden in the numerical implementation instead of made
apparent by changing the equations. The implementation of an unconditionally stable
numerical scheme like Crank–Nicolson also becomes much more complicated for the
nonlinear diffusion terms present in all three modified equations, since the algebraic
equations determining the dependent variables at the end of the timestep become
nonlinear, and typically have to be solved by Newton’s method. Numerical solutions
of the implicit and explicit versions of the PSM equation thus require algorithms of
similar complexity, as explained in § 7 below. It turns out that for realistic laboratory
parameters the primary constraint on the timestep is the accuracy of the advection
rather than any stability constraint for diffusion.

2.2. Comparison with other shallow-layer magnetohydrodynamic equations

It is perhaps worth contrasting equation (2.7) with the dispersive shallow-water
magnetohydrodynamic (SWMHD) equations recently obtained by Dellar (2003) to
model a thin layer of electrically conducting fluid permeated by a predominantly
horizontal magnetic field at high magnetic Reynolds number. Dispersive SWMHD
extends Gilman’s (2000) earlier SWMHD equations by retaining higher-order terms
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in a small aspect ratio approximation, and coincides with Green & Naghdi’s (1976)
higher-order shallow-water equations in the absence of a magnetic field. All these
equations may be derived by layer-averaging. The chief difference between these
models and the PSM equation arises because SWMHD neglects viscous and resistive
effects. SWMHD therefore lacks the Hartmann boundary layers that define a (small)
vertical lengthscale other than the layer depth. In particular, the leading-order
horizontal velocity in Green–Naghdi or dispersive SWMHD is independent of z

throughout the domain, so the vertically averaged Reynolds stress is simply uu = u u
to sufficient accuracy. Corrections similar to the last term in equation (2.7) only arise
via non-hydrostatic contributions to the pressure. These corrections are dispersive
rather than dissipative, involving odd rather than even numbers of derivatives, but
still lead to an implicit system containing mixed spatio-temporal derivatives.

3. The anticipated vorticity method
The qualitative behaviour of the two-dimensional Navier–Stokes equations is

strongly constrained by the behaviour of the kinetic energy E, and enstrophy (mean
squared vorticity) Z, as given by

E =
1

2

∫
|u|2 dx dy = −1

2

∫
ωψ dx dy, Z =

1

2

∫
ω2 dx dy. (3.1)

We have assumed suitable boundary conditions, such as periodic or no flux (ψ = 0
on the boundary), to integrate by parts on the energy integral. Both quantities are
exactly conserved by the two-dimensional Euler equations (ν = 0).

The selective decay property of two-dimensional turbulence is based on the
observation that for the Navier–Stokes equations (ν > 0),

dE
dt

= −ν

∫
|ω|2 dx dy = −2νZ = O(ν) as ν → 0, (3.2a)

dZ
dt

= −ν

∫
|∇ω|2 dx dy = O(νγ ) with γ < 1, (3.2b)

because |ω| and Z are bounded independently of ν by the initial conditions (Batchelor
1969; Bretherton & Haidvogel 1976; Matthaeus & Montgomery 1980). By contrast,
vortex stretching in three dimensions typically causes enstrophy to grow initially rather
than decay. Numerical simulations by Kida, Yamada & Ohkitani (1988) suggest that
γ ≈ 0 in fully developed two-dimensional turbulence, whereas γ ≈ 1/2 when regions
of strong vorticity gradients are confined to a few one-dimensional structures, or
sheets. In either case, the enstrophy Z decays at an asymptotically faster rate than
the energy E as ν → 0. Ting, Matthaeus & Montgomery (1986) gave a concrete proof
that ∂t (Z/E) � 0 in a periodic domain, with equality only for flows comprising a
single Fourier mode.

The anticipated vorticity method proposed by Sadourny & Basdevant (1981, 1985,
see also Basdevant & Sadourny 1983) is a model for two-dimensional turbulence
motivated by the asymptotically rapid decay of enstrophy with respect to energy at
high Reynolds numbers, or small ν. As in many turbulence models, they decomposed
the velocity and vorticity into mean and fluctuating parts,

u = u + u′, ω = ω + ω′, (3.3)

where u and ω are supposed to arise from applying some local averaging procedure
to the true fields u and ω. In this section an overbar means a small-scale average, not
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a layer average. These averages are supposed to be resolved by numerical simulations,
while the remaining fluctuations u′ = u − u and ω′ = ω − ω are supposed to contain
unresolved small lengthscales. Thus the vorticity equation becomes

∂t (ω + ω′) + u · ∇ ω + u · ∇ω′ + u′ · ∇ ω + u′ · ∇ω′ = ν∇2( ω + ω′). (3.4)

Assuming a forward enstrophy cascade at small scales, and a corresponding k−3

spectrum (Kraichnan 1967) for the energy at wavenumber k, implies the inequalities
u′ · ∇ω′ � u · ∇ω′ and u′ · ∇ω � u · ∇ω′. Ignoring viscosity, the leading-order mean
vorticity equation is thus

∂t ω + u · ∇(ω + ω′) = 0. (3.5)

Sadourny & Basdevant (1981, 1985) postulated an equation for the vorticity
fluctuations of the form

∂tω
′ +

λ

τ
(u · ∇ω) = −ω′

τ
, (3.6)

where ω′ is forced by the mean vorticity gradient, but relaxes back towards zero
with some timescale τ . Equation (3.6) formally simplifies to ω′ = −λu · ∇ω in the
small-relaxation-time limit τ → 0, after which equation (3.5) becomes the inviscid
anticipated vorticity equation

∂t ω + u · ∇(ω − λu · ∇ω) = 0. (3.7)

The energy equation (3.2a) is unchanged by the extra term, while the enstrophy
equation becomes

dZ
dt

= −
∫

dx dy ν |∇ω|2 + λ |u · ∇ω|2. (3.8)

4. The anticipated velocity method
As noted in the Introduction, the evolution equation for u implied by the anticipated

vorticity equation (3.7) for ω cannot be written as the divergence of a symmetric stress
tensor. For this reason, Benzi et al. (1990, 1992) proposed the alternative

∂t u + u · ∇u + ∇p = λ∇ · {u(u · ∇u) + (u · ∇u)u} (4.1)

as being more suitable for implementation in a lattice Boltzmann method (Benzi et al.
1992; Chen & Doolen 1998; Succi 2001). In these simplified versions of the kinetic
theory of gases, macroscopic quantities like fluid density and velocity are derived
from a set of distribution functions fi that are postulated to evolve according to a
lattice Boltzmann equation of the form

∂tfi + ξ i · ∇fi = Ci(f0, . . . , fN ). (4.2)

The constant lattice vectors ξ i and collision operator C must be chosen so that the
first few moments of equation (4.2) give the required macroscopic equations in the
form

∂tρ + ∇ · (ρu) = 0, ∂t (ρu) + ∇ · Π = 0. (4.3)

In particular, since the momentum equation is derived by multiplying equation (4.2)
by ξ i and summing, the momentum flux tensor Π =

∑
i ξ iξ ifi is symmetric by

construction.
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Dellar (2004) devised a lattice Boltzmann equation that solved the compressible
analogue of the anticipated velocity method in the form

∂tρ + ∇ · (ρu) = 0, (4.4a)

∂t (ρu) + ∇ ·
(
c2
s ρI + ρuu − λρ[(u · ∇u)u + u(u · ∇u)]

)
= ∇ · [ρν((∇u) + (∇u)T)], (4.4b)

where c2
s ρI is the isotropic pressure tensor for an isothermal equation of state with

sound speed cs. This equation of state arises in the simplest and most commonly
used lattice Boltzmann equations (Chen & Doolen 1998). Solutions of this system
are expected to converge towards solutions of the incompressible equation (4.1) in
the limit of small Mach number, Ma = |u|/cs → 0. Dellar (2004) also showed that
the continuum equations solved by most common lattice Boltzmann equations, using
nine particle velocities ξ i arranged on a square lattice, coincide with the anticipated
velocity method with a small negative (antidiffusive) value of λ. The compressible
solutions reported in Dellar (2004) converge with the expected O(Ma2) compressibility
error, and second-order spatial truncation error, towards the incompressible solutions
obtained using the numerical method described in § 7 below. These solutions provide
an independent verification of the numerical method and solutions presented in this
paper.

5. Evolution of energy and enstrophy under the PSM model
In this section we consider the evolution of the energy and enstrophy under the

PSM equation without forcing or drag. These terms proportional to κ that we neglect
would add extra algebraic terms to the energy and enstrophy dissipation rates. Taking
the inner product of the dimensionless PSM equation (1.6) with u and integrating by
parts leads to an energy equation in the form

dE
dt

= −
∫

dx dy ν ω2 + 7
36

β|u · ∇u|2 + 1
8
β(u · ∇u) · ∂u

∂t
. (5.1)

The time derivative has been moved from u · ∇u onto u in the last term using
the formula u · ∂t (u · ∇u) = ∂t (∇ · ( 1

2
|u|2u))− (u · ∇u) · ∂t u. The exact time derivative ∂t ()

vanishes because it is the time derivative of an exact spatial divergence. Equation (5.1)
may be rewritten as

dE
dt

= −
∫

dx dy
(
ν ω2 + 5

72
β|u · ∇u|2

)
+ 1

8
β

∫
dx dy ((u · ∇u) · ∇p′) + O(β2, βν, ν2),

(5.2)

after substituting the leading-order approximation ∂t u = −u · ∇u − ∇p′ + O(β, ν)
consistent with the neglect of forcing and drag. The pressure p′ ensures that the
approximate ∂t u is incompressible, and differs by O(β, ν) from the true pressure p

in (1.6). The Poisson equation ∇2p′ = −∇ · (u · ∇u) that defines p′ allows the second
integral in (5.2) to be manipulated into∫

dx dy (u · ∇u) · ∇p′ = −
∫

dx dy p′∇ · (u · ∇u)

=

∫
dx dy p′∇2p′ = −

∫
dx dy |∇p′|2 � 0. (5.3)
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Equation (5.2) then implies the energy inequality

dE
dt

� −
∫

dx dy
(
ν ω2 + 5

72
β|u · ∇u|2

)
� 0, (5.4)

ignoring errors of quadratic order in β and ν. In other words, the extra nonlinear terms
in the PSM equation due to Ekman pumping cause energy to decrease as expected, at
least when the deviations from the two-dimensional Euler equations are small enough
to justify simplifying the ∂t (u · ∇u) term using a leading-order approximation for ∂t u.

The energy equation (5.2) based on the leading-order approximation for ∂t u may
also be rewritten in streamfunction–vorticity form as

dE
dt

= −
∫

dx dy ν ω2 + 7
36

β
(
[ψ, ψx]

2 + [ψ, ψy]
2
)

+ 1
8
β[ψ, ω]∇−2 ([ψ, ω]) . (5.5)

While the final term has the opposite sign to the first two, because ∇−2 is a negative
definite operator, the previous argument about the pressure ensures that it is always
dominated by the second term. The energy decay rate thus satisfies the inequalities∫

dx dy
(
ν ω2 + 5

72
β|u · ∇u|2

)
� −dE

dt
�

∫
dx dy

(
ν ω2 + 7

36
β|u · ∇u|2

)
. (5.6)

We return to these inequalities in the light of some numerical experiments in § 9
below.

The corresponding enstrophy equation for the explicit form of the PSM equation
is

dZ
dt

= −
∫

dx dy ν |∇ω|2 + 5
72

β[ψ, ω]2 + 7
36

βω2[ψx, ψy], (5.7)

in streamfunction–vorticity notation. The enstrophy need not decay monotonically,
and may in fact increase. An explicit example is ψ = r2/(1+ r2)2 in polar coordinates.
Since ψ and ω are both functions of the polar radius r only, the Jacobian term [ψ, ω]2

in (5.7) vanishes. The final term dominates the integral when ν/β is sufficiently small,
making ∂tZ positive. In general, streamfunctions of this form that correspond to a
reversal in the sign of the circulation (as in § 2) lead to shock formation in the inviscid,
drag-free form of the axisymmetric PSM equation.

For comparison, the energy and enstrophy equations for the anticipated velocity
method are

dE
dt

= −
∫

dx dy (ν ω2 + λ|u · ∇u|2) � 0, (5.8)

which lacks the time-derivative term in (5.1), and

dZ
dt

= −
∫

dx dy ν|∇ω|2 + λ([ψ, ω]2 + ω2[ψx, ψy] + 2ω∇ · ([ψx, ψy]∇ψ)). (5.9)

Thus the anticipated velocity method dissipates energy, like the PSM equation, but
may cause enstrophy to increase, again like the PSM equation. By contrast, the
anticipated vorticity method leaves the energy invariant, and dissipates enstrophy.

6. Linear waves
To analyse further the properties of the PSM equation (1.6), again without

forcing or drag, we consider the behaviour of small-amplitude waves on a uniform
background flow. Taking the uniform flow to be in the positive x-direction, so that
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Figure 2. Decay rate −Re σ versus wavenumber k for the PSM model with U = 1, β = 0.1,
and ν = 10−4. The solid line is the theoretical prediction from equation (6.1), and the dots
are numerical measurements from simulations (see § 8.1). The upper dotted line is the
large-wavenumber limit, −Re σ → 40/(9β) + 64ν/(βU )2 as k → ∞. The dashed parabola shows
the theoretical prediction for all of the explicit methods: anticipated vorticity, anticipated
velocity, and the explicit PSM equation (2.13).

ψ = −Uy + ψ ′(x, y, t), linear plane wave solutions with ψ ′ proportional to exp[σ t +
i(kx + ly)] exist with growth rate

σ = −ikU
1 + 1

8
βν(k2 + l2) + 7

288
β2k2U 2

1 + 1
64

β2k2U 2
−

ν(k2 + l2) + 5
72

βk2U 2

1 + 1
64

β2k2U 2
. (6.1)

The real part of σ , which is negative, determines the decay rate, while the
imaginary part determines the propagation speed. The decay rate initially increases
proportionally to k2, but eventually saturates at the finite value 40/(9β) + 64ν/(βU )2

as k → ∞, as shown in figure 2. Ignoring viscosity, the group velocity d(Im σ )/dk

reaches a maximum of 13U/8 at k = 8
√

3/(βU ), and then asymptotes to the lower
value of 14U/9 as k → ∞. The phase velocity k−1Im σ increases monotonically from
U to 14U/9 as k increases.

By contrast, the dispersion relations for the anticipated vorticity method, the
incompressible anticipated velocity method, and the explicit version of the PSM
equation are all

σ = −ikU − ν(k2 + l2) − 5
72

βk2U 2, (6.2)

provided the parameter λ= 5β/72 is used in the anticipated vorticity and velocity
methods. The imaginary part, corresponding to the propagation speed, is unchanged
from the Euler equations. There is an apparent extra anisotropic viscosity of
magnitude (5β/72)U 2 in the direction of the background flow. The decay rate thus
increases in proportion to k2 without limit.

The behaviour of the two dispersion relations is plotted in figures 2 and 3 for
the parameters β = 0.1, U = 1, and ν =10−4. Since the dimensional value of |u| was
absorbed into Ha and N earlier, we may take U = 1 without loss of generality. The
value β =0.1 is much larger than in typical laboratory applications, as β = 10−4 for
the parameters in the Introduction, but was chosen to illustrate the saturation of
the decay rate for large wavenumbers. For these parameters saturation occurs at
wavenumbers that are not so large as to prevent a comparison of the theoretical
dispersion relation (6.1) with the numerical experiments reported in § 8.1 below.

The two dispersion relations (6.1) and (6.2) only begin to differ significantly when
the second term in the denominators of (6.1) becomes O(1), or when k ∼ 8/β . More
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Figure 3. Phase speed −Im σ/k versus wavenumber k for the PSM model with U = 1,
β = 0.1, and ν = 10−4. The solid line is the theoretical prediction from equation (6.1), and
the dots are numerical measurements from simulations (see § 8.1). The upper dotted line is the
large-wavenumber limit, −Im σ/k → (14/9)U as k → ∞. The phase speed remains unchanged
for all the explicit methods.

concretely, the maximum in the group velocity is attained when the dimensionless
horizontal wavenumber is

k =
8

√
3

βU
= 8

√
3
NHa

nδ
∼ 1.4 × 105, (6.3)

using the parameters from the Introduction. Based on these calculations, the
replacement of the original PSM equation, with dispersion relation (6.1), by the
explicit version with dispersion relation (6.2) is amply justified since the two only
differ at very short horizontal lengthscales k � δ−1N1/3. Such short lengthscales are
far beyond the validity of the PSM model as a small-aspect-ratio approximation, since
quasi-two-dimensionality is only valid on horizontal lengthscales larger than aN−1/3

(Sommeria 1988). Since N = 7.8 for the typical parameters in the Introduction, the
factors of N 1/3 make little difference to the straightforward geometrical argument that
a small-aspect-ratio, or shallow-layer, approximation becomes invalid at horizontal
lengthscales comparable to the layer depth.

7. Numerical method
As discussed in the Introduction, the PSM equation (1.8) is an implicit evolution

equation. It contains mixed spatio-temporal derivatives arising from the ∂t [ψ, ω] term.
We rewrite equation (1.8) as

ωt − 1
8
β{[ψt, ω] + [ψ, ωt ]}

= −[ψ, ω] + ν∇2ω + 7
36

β{[ψ, [ψ, ω]] + [ψy, ωψx] + [ωψy, ψx]}, (7.1)

after neglecting the algebraic forcing and drag terms. The terms involving time
derivatives have all been collected on to the left-hand side of (7.1). Even after spatial
discretization, in this case using truncated Fourier series to replace ω(x, t) by a finite
set {ωn(t)}, equation (7.1) cannot be written as a system of ordinary differential
equations,

ωt = F (ω), (7.2)
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due to the terms like [ψ, ωt ] on the left-hand side. Instead, equation (7.1) is of the
more general form

G(ω, ωt ) = 0, (7.3)

that constitutes an autonomous system of differential-algebraic equations or DAEs
(Brenan, Campbell & Petzold 1995; Gresho & Sani 2000). In fact, equation (7.1) takes
the more restrictive form

M(ω)ωt = F (ω), (7.4)

of an implicit system of ordinary differential equations (ODEs), since the left-hand
side of equation (7.1) may be written as an invertible linear operator M acting on
ωt . A genuine differential-algebraic system only arises when M(ω) may be singular,
but since good algorithms are available to solve the more general form equation (7.3)
(Brenan et al. 1995), there seemed little need to exploit this special case.

Most algorithms for DAEs are quite similar to implicit multistep methods for
solving systems of ODEs. As a simple example, consider applying the backwards
Euler method, in which ωt is approximated by the first-order finite difference formula
h−1(ω(t+h) − ω(t)) for a timestep of length h, and ω is replaced by its value ω(t+h) at
the end of the timestep. Equations (7.2) and (7.3) then become

h−1
(
ω(t+h) − ω(t)

)
= F

(
ω(t+h)

)
, (7.5a)

G
(
ω(t+h), h−1(ω(t+h) − ω(t))

)
= 0. (7.5b)

Both equations have become nonlinear algebraic systems for ω(t+h), which may
be solved by Newton’s method. In practical implementations the crude first-order
approximation ∂tω = h−1(ω(t+h) − ω(t)) + O(h) is replaced by higher-order formulae
involving ω(t−h) and earlier values.

The numerical experiments were performed using the freely available DAE solver
package DASPK (Brown, Hindmarsh & Petzold 1994), the successor to the (also
freely available) DASSL (Petzold 1983). DASPK improves upon its predecessor by
solving the linear systems of equations that arise within Newton’s method using
preconditioned Krylov space (PK) methods (e.g. Saad 1996; Trefethen & Bau 1997)
instead of the direct LU factorization approach of DASSL. This improvement allows
much larger ODE systems to be tackled. In the direct approach used by DASSL,
linear systems of the form Ax = b that arise from Newton’s method are solved
by factorizing the matrix as A= LU, where L and U are lower and upper triangular
matrices respectively. In other words, all entries of L vanish strictly above the diagonal,
and all entries of U vanish strictly below the diagonal. Solving the linear system Ax = b
then reduces to solving the lower triangular system L y = b by forward substitution,
and the upper triangular system Ux = y by back substitution (Golub & Van Loan
1996; Trefethen & Bau 1997).

Unfortunately, the matrices A, L, and U arising in the 256 × 256 resolution
computations presented below each contain 2564 ≈ 4×109 entries, and would consume
a prohibitive 32 gigabytes of storage. However, the preconditioned Krylov space
methods mentioned above are able to solve linear systems of the form Ax = b
without computing or storing the matrix A. Instead, only matrix-vector products,
i.e. A x for general x, need be computed. Krylov space methods are iterative,
computing successively better approximations to the exact solution until they reach
some stopping criterion. These approximations are all of the form x ≈ Pn(A)b, where
successive polynomials Pn of degree n= 1, 2, 3, . . . are typically constructed so that the
difference between the approximate solution Pn(A)b and the true solution x is minimal
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in some norm. In particular, DASPK uses the generalized minimal residual algorithm
(GMRES) devised by Saad & Schultz (1985) for solving general non-symmetric linear
systems. For each n, GMRES minimizes the �2 norm of the residual ||APn(A)b − b||2
over all polynomials of degree n.

7.1. Preconditioning

Krylov space methods typically benefit from preconditioning, the replacement of the
original linear system Ax = b by the equivalent system P−1A x = P−1b. The matrix P
is called the preconditioner (e.g. Saad 1996; Golub & Van Loan 1996; Trefethen &
Bau 1997), and should be chosen to approximate A, subject to the constraint that
P−1x be relatively easy to compute for any x. The numerical experiments reported
below employed a simple preconditioner based on the operator h−1 −ν∇2 arising from
just the ∂tω and ν∇2ω terms in equation (7.1). This preconditioning matrix becomes
diagonal, h−1 + νk2, in Fourier space, and so may be inverted very simply. With
this preconditioner, the GMRES solver converged in around fifteen iterations for all
sizes of problem considered, ranging from 64 × 64 to 512 × 512 Fourier modes. The
linear systems are most ill-conditioned during the computation of consistent initial
conditions (see below), and the average number of GMRES iterations necessary
during the time integrations of a turbulent flow reported below turned out to be even
smaller, only three or four. Some concrete figures are given in tables 1 and 2 in § 9.

7.2. Nonlinear terms

The nonlinear terms were evaluated pseudo-spectrally, i.e. using a collocation
approach. More precisely, the DAE integrator was applied to gridpoint values of ω

and ωt in physical space, and products were computed in physical space, while spatial
derivatives were computed spectrally. Gridpoint values were used because the adaptive
error and stepsize control in the DAE integrator works much better for systems of
equations in which the variables are all of the same order of magnitude. Thus if
the DAE integrator were applied to the Fourier coefficients instead of the gridpoint
values, it would be necessary to estimate the exponent γ of the spectrum ωk ∝ |k|−γ

in order to rescale the ωk to be the same order of magnitude for all wavevectors k. No
de-aliasing procedure was used, on the grounds that the simulations were sufficiently
well resolved to render de-aliasing redundant. The fast Fourier transforms between
physical and spectral space were computed using the library FFTW version 2.1.3 by
Frigo & Johnson (1998).

7.3. Initial conditions

The computation of consistent initial conditions, in this case ω and ωt that together
satisfy equation (7.1), is often problematic for DAE systems (Brown, Hindmarsh &
Petzold 1998), because Newton’s method may not converge without a good first
approximation. In the computations presented below, equation (7.1) was first solved
crudely for ωt given ω by fixed point iteration, i.e. by first setting ωt equal to the
right-hand side, using this first approximation in the [ψt, ω] = [∇−2ωt, ω] and [ψ, ωt ]
terms, and iterating. The successive iterates did not converge to an exact solution in
general, because the relevant operator on the left-hand side of equation (7.1) is not a
contraction, so the iterations were halted when the �2 norm of the residual stopped
decreasing. This procedure provided an adequate initial guess for the initialization
routine in DASPK to compute a consistent ωt from ω. Alternatively, equation (7.1)
could have been solved directly as a linear system of equations for ωt using Krylov
space methods, but the approach described above using fixed point iteration was
easier to implement and worked well enough.
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7.4. Explicit ODE systems

In contrast to the implicit PSM equation, the comparison models in equations (1.10)
and (1.14), and the explicit version of the PSM equation in (2.13), all give explicit
expressions for ∂tω. While it is simplest to solve them using the same DAE integrator
used for equation (7.1) as described above, it proved slightly faster to use the
conventional ODE integrator VODPK. This integrator is a modification of the earlier
VODE (variable coefficient ODE) solver by Brown, Byrne & Hindmarsh (1989) to
use preconditioned Krylov (PK) methods. For these ODE systems the fully explicit
Adams–Bashforth integration method in VODPK worked well enough, because the
main constraint on the timestep was the accuracy of the advection rather than the
accuracy or stability of the diffusion.

To be concrete, the three explicit equations solved along with the original PSM
equation without forcing or drag in the form (7.1) are the explicit PSM equation
without forcing or drag,

∂tω+[ψ, ω]=ν∇2ω− 1
8
β[∇−2[ψ, ω], ω]+ 5

72
β[ψ, [ψ, ω] ]+ 7

36
β{[ψy, ωψx]+[ωψy, ψx]},

(7.6)

the viscous anticipated vorticity method

∂tω + [ψ, ω] = ν∇2ω + λ[ψ, [ψ, ω] ], (7.7)

and the viscous anticipated velocity method

∂tω + [ψ, ω] = ν∇2ω + λ{[ψ, [ψ, ω] ] + [ψy, ωψx] + [ωψy, ψx] + 2∇ · ([ψy, ψx] ∇ψ)}.
(7.8)

All four equations were solved with the same value for the viscosity ν, and with the
parameters λ and β related by β = (72/5)λ so that the coefficients of the [ψ, [ψ, ω] ]
term are all equal in all four equations. Some isotropic diffusion (ν > 0) proved
necessary for numerical stability, even though the λ and β terms provide a form of
dissipation even when ν =0.

8. Roll-up of shear layers
Minion & Brown (1997) studied the performance of various numerical schemes

in under-resolved simulations of the two-dimensional incompressible Navier–Stokes
equations. Their initial conditions corresponded to a pair of perturbed shear layers,

ux =

{
tanh(κ(y − 1/4)), y � 1/2,

tanh(κ(3/4 − y)), y > 1/2,

uy = ε sin(2π(x + 1/4)),

in the doubly periodic domain 0 � x, y � 1. The parameter κ controls the width of
the shear layers, and ε the magnitude of the initial perturbation. The shear layers
roll up due to a Kelvin–Helmholtz instability excited by the O(ε) perturbation in uy .
These initial conditions may be thought of as representing a small portion of the
electrically forced circular shear layer in the MATUR experiment (Alboussière et al.
1999; Messadek & Moreau 2002).

8.1. Linear waves

The numerical method described in § 7 assumes that the vorticity ω and streamfunction
ψ may both be expanded as Fourier series. This assumption therefore excludes
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simulation of a uniform stream in the x-direction, say, because ψ = Uy is not periodic
even though u, v, and ω are all periodic. In principle the numerical method could
be modified to add a constant U wherever ψy appears in equation (1.10), since ψ

itself never appears undifferentiated after the Jacobians [·, ·] have been expanded, but
such extensive modifications would rather spoil the purpose of the experiments for
validating the original numerical implementation.

However, the unperturbed initial conditions in equation (8.1) comprise two
oppositely directed uniform streams separated by thin shear layers, and this flow
can be represented by a doubly periodic streamfunction. For sufficiently short times,
the vorticity disturbance proportional to ε behaves as though it were a perturbation
to a uniform stream. Although the perturbation excites Kelvin–Helmholtz instabilities
of the shear layers that eventually grow to obliterate the original vorticity wave, as
described below, for a short time the disturbance created by these instabilities remains
negligible near the centreline.

The amplitude and phase of the disturbance were computed from the one-
dimensional Fourier representation of the vorticity on the centreline y = 1/2 between
the two shear layers. Least-squares linear fits to the phase and logarithm of the
amplitude as functions of time t for 0 � t � 0.01 yielded an experimental phase
speed and decay rate. The agreement between the experiments and the theoretical
predictions from equation (6.1) was found to be excellent, as shown in figures 2 and 3.
The correct theoretical decay rates were typically recovered to four significant figures,
and the correct phase speeds to five or more significant figures.

8.2. Nonlinear development

Figures 4 and 5 show the evolution of the vorticity, starting from the two horizontal
shear layers given in equation (8.1) with ε = 0.05 and κ = 40 under the Navier–Stokes
equations, the anticipated vorticity method, the anticipated velocity method, and the
PSM model without linear drag. All four numerical experiments were performed
on a 256 × 256 grid, and all four equations included a Navier–Stokes viscous term
corresponding to an initial Reynolds number Re =2 × 104 based on the maximum
velocity and the domain size. Some isotropic viscosity is necessary in all four equations
for numerical stability. The PSM parameter β = (72/5)λ= 0.0576 was chosen so
that the dispersion relation (6.1) matches the dispersion relation for the anticipated
vorticity and velocity methods at leading order. The numerical solutions shown here
were validated by comparing the solution for the anticipated velocity method with
independent solutions of the compressible analogue of the anticipated velocity method
obtained using a lattice Boltzmann formulation (Dellar 2004). These lattice Boltzmann
solutions converged to solutions obtained using the spectral method described above
with the expected O(Ma2) compressibility error, and O(N−2

x ) spatial truncation error
on an Nx × Nx grid. Detailed convergence graphs may be found in Dellar (2004).

Figures 4(a) and 5(a), for the unmodified Navier–Stokes equations, show the shear
layers winding up into two spiral vortices, which is the expected nonlinear development
of the Kelvin–Helmholtz instability initiated by the perturbation uy in the initial
conditions. The anticipated vorticity method, equation (1.10) with parameter λ= 0.004,
as shown in Figures 4(b) and 5(b), leaves the location of the wound-up shear layers
unaffected, but containing noticeably less intense vorticity. The peak vorticity, located
in the centres of the two vortices, is almost unchanged, and remains substantially
greater in magnitude than the vorticity in the filaments around each vortex. The
vortices in the anticipated vorticity method are noticeably more axisymmetric,
especially at the later time t = 1.2 in figure 5, than in the Navier–Stokes equations.



218 P. J. Dellar

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

(a)

30

20

10

0

–10

–20

–30

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

(b)

30

20

10

0

–10

–20

–30

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

(c)

40

30

20

10

0

–10

–20

–30

–40

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

(d)

40

30

20

10

0

–10

–20

–30

–40

Figure 4. The vorticity at time t = 0.80 from (a) the unmodified Navier–Stokes equations,
(b) the anticipated vorticity method with λ= 0.004, (c) the anticipated velocity method also
with λ= 0.004, and (d) the PSM model with β = (72/5)λ=0.0576. All four equations included
a linear viscous term corresponding to an initial Reynolds number of 2 × 104.

This is what one would expect from the [ψ, [ψ, ω] ] term in the anticipated vorticity
method diffusing vorticity along the (roughly circular) streamlines in the vortices.

By contrast, the anticipated velocity method (also with λ= 0.004) and the PSM
equation, as shown in plots (c) and (d) respectively, both lead to two larger
homogenized elliptical patches of uniform vorticity instead of the spiral vortices.
This behaviour may be attributed to the [ψy, ωψx] + [ωψy, ψx] terms present in both
equations. These are the terms responsible for the outward spreading of vorticity in
axisymmetric flows, as expressed by the (Γ 3)s term in the circulation form (2.11) of
the PSM equation. This effect is due to Ekman pumping driven by radial pressure
gradients transporting vorticity outwards, as explained in § 2. Any curvature of the
streamlines requires a pressure gradient to balance the centrifugal force, so it is
reasonable to expect that the Ekman pumping would cause curved streamlines to
move outwards in non-axisymmetric flows as well.

Finally, the tilted elliptical form of the vortices may be attributed to the diffusion
of vorticity along the streamlines inside the shear layers into the vortices. This has
the effect of feeding in vorticity at the two attachment points where the shear layers
merge with the edge of the vortices. The location of the peak vorticity has also moved
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Figure 5. The vorticity at the later time t = 1.2 from the same four sets of equations
as figure 4.

from the centres of the vortices to the middle of the shear layers, more noticeably in
the PSM equation, since the expansion of the elliptical vortices is accompanied by a
corresponding reduction in the value of the vorticity in order to conserve circulation.

9. Freely decaying turbulence
The previous figures show the effect of the various extra terms in the anticipated

vorticity, anticipated velocity, and PSM equations on the formation of a pair of
coherent vortices from simple initial conditions. In this section we consider the
evolution of more complex initial conditions, a k−3 energy spectrum with uniformly
distributed random phases. This energy spectrum is normally taken to signify a
forwards enstrophy cascade to small scales (Kraichnan 1967; Batchelor 1969), but
in liquid-metal experiments it may also be attributed to the usual inverse energy
cascade being modified by Hartmann braking (Messadek & Moreau 2002) because
the algebraic drag −nαu/tH from Hartmann braking provides dissipation at all
wavenumbers, as discussed in the Introduction.

The initial conditions were scaled to have unit kinetic energy. With this
normalization, the initial peak vorticity ωmax � 130 was much larger than in the
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Figure 6. The vorticity at t = 1.0 from (a) the unmodified Navier–Stokes equations, (b) the
anticipated vorticity method with λ= 4 × 10−4, (c) the anticipated vorticity method also with
λ=4 × 10−4, and (d) the PSM model with β =(72/5)λ=0.00576. All four equations included
a linear viscous term corresponding to an initial Reynolds number of 104.

previous experiments, so the parameters λ= 4 × 10−4 and β = (72/5)λ≈ 0.0058 in
front of the cubic nonlinear terms were chosen to be correspondingly smaller. The
simulations shown were performed on a 256 × 256 grid. Each equation included
an isotropic Navier–Stokes viscous term with ν = 10−4, corresponding to a Reynolds
number Re = 104 based on the initial kinetic energy and domain size. These parameters
are reasonably indicative of laboratory experiments, although the parameters λ and
β multiplying the linear and nonlinear diffusion terms are both too large. True
laboratory values would require both a finer computational grid, and the simulation
of many more eddy turnover times.

Figure 6 shows the vorticity field at time t =1.0 that evolved from one realization
of these random initial conditions under the four different equations. While it is
difficult to make a direct comparison because various features are shifted slightly
between plots (c) and (d), so that a pointwise correlation is not very useful, it should
be apparent that plots (c) and (d) resemble each other more closely than any other
pair. A second noticeable feature is that plots (c) and (d) show much larger areas
covered by regions of close-to-extremal vorticity, areas of very light or very dark
shading.
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Figure 7. The vorticity at the later time t =5.0 for the same four equations and parameter
values as figure 6.

These comparisons are reinforced by the vorticity fields at the later time t = 5.0
shown in figure 7. The initial conditions have now evolved into vortex dipoles under
all four different equations. The Navier–Stokes and anticipated vorticity method
solutions, which are very similar, comprise two fairly small but intense isolated
vortices in a background of very weak vorticity. By contrast, the vortices in the
PSM and anticipated velocity method solutions, which are again qualitatively very
similar, have much weaker peak vorticities, but the two vortices in each solution have
expanded to fill the computational domain.

These visual impressions may be quantified by plotting the evolution of the kurtosis,
or flatness, of the vorticity field. McWilliams (1984) and Weiss & McWilliams (1993)
used the kurtosis, defined by

K = Z−2 1

4

∫
ω4 dx dy =

〈ω4〉
〈ω2〉2

, (9.1)

as a measure of intermittency, and thus of the formation of coherent structures. The
evolution of the kurtosis turns out to be more illuminating than the evolution of
the energy 〈 1

2
u2〉, the enstrophy 〈 1

2
ω2〉, or the palinstrophy 〈|∇ω|2〉, all of which will
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Figure 8. Evolution of the kurtosis 〈ω4〉/〈ω2〉2 for the same four equations and parameter
values as figure 6.

be discussed later. Moreover, the energy spectra of the vorticity fields at t = 1.0 for
the three modified equations are almost indistinguishable from each other. Spectra
are not very useful for investigating coherent structure formation because the crucial
phase information is lost.

The reciprocal K−1 of the kurtosis reflects the fraction of the area occupied by the
dominant structures in ω. The kurtosis is thus expected to be O(R2/r2) for a flow
field comprising isolated coherent structures of lengthscale r , separated by a larger
typical mean distance R (McWilliams 1984). By contrast, a uniform vorticity field
with ω = const has kurtosis K = 1. The kurtosis of the vorticity field, given by (9.1),
should not be confused with the kurtosis of various probability density functions
reported by Sommeria (1988) based on correlations between low-order modes and
the value of the streamfunction at one point.

Figure 8 shows the evolution of the kurtosis for the same four different equations
with the same random initial conditions. Being the superposition of many independent
random phases, the initial conditions approximate a Gaussian random variable, and
therefore have kurtosis K = 3. The kurtosis increases initially for the Navier–Stokes
equations and anticipated vorticity method, due to the formation of isolated coherent
vortices by the inverse cascade. The time interval 2.0 < t < 2.5 in which the growth in
kurtosis saturates marks the final reduction of the number of vorticity extrema down
to two through vortex merging. The kurtosis subsequently decays gradually due to
slow viscous spreading of the remaining two vortices.

By contrast, the spreading of vorticity extrema under the PSM and anticipated
velocity equations causes the kurtosis to decrease slightly from the initial conditions.
Although comparatively extended regions of large positive or negative vorticity form
for these two equations, as shown in figures 6(c) and 6(d), they are not isolated
by surrounding quiescent regions of weak vorticity, and so do not contribute to an
increase in the kurtosis. The qualitative behaviour, as seen in both the vorticity fields
and the kurtosis, resembles that found by Polvani et al. (1994) in their study of two-
dimensional turbulence in the rotating-shallow-water equations. The rotation rate Ω

and finite surface gravity wave speed
√

gh define a lengthscale LD =
√

gh/Ω called
the deformation radius. On scales much smaller than LD, solutions of the rotating-
shallow-water equations behave like incompressible two-dimensional flows, so Polvani
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Figure 9. Histogram of vorticity values at t = 1.0 for the same four equations and
parameter values as figure 6.

et al. (1994) found the expected growth in kurtosis over time indicating the formation
of isolated coherent structures. The background rotation becomes important on scales
comparable to LD, which sets a natural maximum scale for vortices. Vortices on the
scale of LD evolve very slowly, and Polvani et al. (1994) found large areas covered
by patches of extremal vorticity, with a kurtosis comparable to their (also Gaussian)
initial conditions. The difference between this shallow-water system and the PSM
or anticipated velocity method is that the latter have no maximum size for vortices
analogous to LD, so the vortices continue growing until they fill the domain.

More quantitatively, the kurtosis may also be interpreted as measuring the tails
of the vorticity distribution. Figure 9 shows histograms of the vorticity at t = 1.0 at
the 2562 collocation points, with a binning interval ∆ω of 0.5, from the numerical
simulations of the four different evolution equations. These histograms serve as
approximations to the vorticity probability density functions (PDFs) that would arise
from an ensemble of random initial conditions. By time t =1.0 the Gaussian initial
conditions, which would appear as a parabola on these semi-logarithmic axes, have
evolved under all four equations into the characteristic double exponential form of
two straight lines meeting at ω = 0. However, the histograms for the anticipated
velocity method and the PSM equation cut off sharply, whereas the tails for the
Navier–Stokes and anticipated vorticity method extend much further out, albeit with
very small densities. In the second set of histograms at the later time t = 5.0 shown
in figure 10, the Navier–Stokes and anticipated vorticity method solutions both have
exponentially decaying tails extending out to extreme values of the vorticity, while
the PSM and anticipated velocity method both produce sharp cutoffs. Moreover, the
vorticity distribution is peaked at or very near the cutoffs, as one would expected
from the hyperbolic behaviour of axisymmetric solutions described in § 2.

Figures 11 to 13 show the evolution of more conventional quantities, the energy
〈 1

2
u2〉, enstrophy 〈 1

2
ω2〉, and palinstrophy 〈|∇ω|2〉, under the four different equations.

Figures 12 and 13 for the enstrophy and palinstrophy use a logarithmic scale on the
vertical axis in order to show the evolution more clearly. Energy decay in both the
Navier–Stokes equations and the anticipated vorticity method is purely viscous, and
at a rate proportional to the enstrophy. The energy in fact decays more slowly under
the anticipated vorticity method, because the additional [ψ, [ψ, ω] ] term reduces the
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Figure 10. Histogram of vorticity values at t =5.0 for the same four equations
and parameter values as figure 6.
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Figure 11. Evolution of the energy 〈 1
2
u2〉 for the same four equations and parameter

values as figure 6.

enstrophy, and hence the energy decay rate, but does not affect the energy directly.
By contrast, the additional terms [ψy, ωψx] and [ωψy, ψx] in the anticipated velocity
method and the PSM equation dissipate energy directly, even in the absence of
viscosity, as shown in (5.8).

The relation λ= (5/72)β between the parameters in the anticipated vorticity/velocity
methods and the PSM equation was chosen to make the decay rates of linear waves
equal, according to the analysis in § 6. Although there is no simple expression for
the energy dissipation rate in the PSM equation, due to the ∂t [ψ, ω] term, equation
(5.6) gives upper and lower bounds for the energy dissipation rate in the explicit
version of the PSM equation in terms of the integrals of ω2 and |u · ∇u|2. The relation
λ=(5/72)β also makes the lower bound for the energy decay rate in the PSM equation
in (5.6) coincide with the energy decay rate for the anticipated velocity method given
in (5.8). Figure 11 shows that the energy in fact decays more quickly in the PSM
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Figure 13. Evolution of the palinstrophy 〈|∇ω|2〉 on a logarithmic scale for the same four
equations and parameter values as figure 6.

equation than in the anticipated velocity method with the same initial conditions, but
it is not surprising that the energy decay rate lies above, rather than precisely on, the
calculated lower bound.

When the energy dissipation is primarily inviscid, through the |u · ∇u|2 term rather
than the ω2 term, as in these numerical experiments, the upper bound in equation (5.6)
is 14/5 = 2.8 times the lower bound. Figure 14 shows the ratio of the true energy
decay rate in the PSM equation to the calculated upper and lower bounds for five
different realizations of the random initial conditions described above. Initially the
energy decay rate in all five realizations is about 1.3 times the lower bound, but
increases over time to approach the upper bound. This suggests that the non-local
[ψ, ω]∇−2[ψ, ω] term in the PSM energy equation (5.5) becomes successively less
significant relative to the [ψ, ψx] and [ψ, ψy] terms as the solution evolves towards
larger spatial lengthscales. A close inspection of figure 14 suggests two different
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Figure 14. Ratio of the energy decay rate in the PSM equation to the minimum given in
(5.6) for five different realizations with the same parameter β = 0.00576 and initial Reynolds
number Re = 104. The upper bound becomes 2.8 times the lower bound in the inviscid limit,
and is shown by the horizontal line.

outcomes at long times: three of the realizations seem to asymptote to the upper
bound, while the other two oscillate distinctly below the upper bound. This is because
the periodic boundary conditions allow the flow to become almost independent of one
coordinate, like the initial conditions used in the previous section, as an alternative to
forming the the vortex dipoles shown in figure 7. The three realizations asymptoting
to the upper bound all form vortex dipoles at large times, while the remaining two
form one-dimensional flows.

Figure 12 shows the evolution of the enstrophy under the Navier–Stokes equations,
and under the three different modified equations. The vertical axis uses a logarithmic
scale to clarify the behaviour at later times when the enstrophy is only a tenth its initial
value. The three modified equations show very similar behaviour initially, but then
diverge. This is probably because the initial conditions contain comparatively large
high-wavenumber contributions to the enstrophy that are damped by the [ψ, [ψ, ω] ]
anticipated vorticity term that is common to all three modified equations, and is
the only term containing second derivatives of the vorticity. The extra terms in the
anticipated velocity and PSM equations only involve lower derivatives of the vorticity.
These term eventually become significant, and then cause the enstrophy to decay more
rapidly than in the anticipated vorticity method. Although the additional terms in the
PSM and anticipated velocity and enstrophy equations are not sign-definite, in these
numerical experiments they do have the effect of increasing the enstrophy decay rate.

Similarly, the evolution of the palinstrophy 〈 |∇ω|2〉 plotted in figure 13 under
the three modified equations is very similar for t � 1, and remains quite similar
thereafter. Again, this is probably because the palinstrophy is dominated by the high-
wavenumber components of the vorticity field, and these are predominantly affected
by the [ψ, [ψ, ω] ] anticipated vorticity term that is common to all three modified
equations.

9.1. Relative computational expense

The numbers in tables 1 and 2 give a rough idea of the relative computational
expense of simulating the various different equations. The run times are all for a
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CPU time Nonlinear iterations
PDE (min) (timesteps) Linear iterations Ratio

Navier–Stokes 5.3 999 3032 3.0
anticipated vorticity method 5.1 194 2595 13.4
anticipated velocity method 10.9 217 2511 11.6
PSM explicit 8.8 194 2296 11.8
PSM implicit 76.3 1249 20482 16.4

Table 1. Computational work to solve the 256 × 256 rollup problem to t =1.2.

CPU time Nonlinear iterations
PDE (min) (timesteps) Linear iterations Ratio

Navier–Stokes 18 4715 9379 2.0
anticipated vorticity method 12 1781 5357 3.0
anticipated velocity method 29 1664 5597 3.4
PSM explicit 25 1625 5536 3.4
PSM implicit 72 3908 17076 4.4

Table 2. Computational work to solve the 256 × 256 turbulence problem to t = 1.0.

2.4 GHz Pentium 4 computer using GNU Fortran version 3.3.1, FFTW version 2.1.3
by Frigo & Johnson (1998), and DASPK version 3.0 by Li & Petzold. This version
of DASPK is a more recent implementation than the version described in Brown
et al. (1994). The relative and absolute error tolerances were both taken to be 10−5

in the time integration. From a comparison with solutions computed using a 10−7

tolerance, the vorticity was in fact computed to a true accuracy of about 3 × 10−5.
About half the computational time was consumed by the fast Fourier transforms
(FFTs).

The plain Navier–Stokes equations appear relatively expensive because they retain
far more fine-scale structure in the vorticity field than any other equation considered,
so the time integration requires about three and a half times as many timesteps
to achieve the same accuracy in the advection. The anticipated vorticity method,
the anticipated velocity method, and the explicit form of the PSM equation are all
very similar in terms of the number of timesteps required. The small ratio of linear
to nonlinear iterations shows that the simple diagonal preconditioner based on the
viscous term is very effective. The simple form of the nonlinear terms makes the
anticipated vorticity method the fastest of the three in terms of CPU time, while
the anticipated velocity method is the slowest, mainly because the 2∇ · ([ψy, ψx] ∇ψ)
term is slower to evaluate pseudospectrally than the other nonlinear terms expressed
as Jacobians. The original PSM equation with its implicit ∂t (u · ∇u) or ∂t [ψ, ω] term
is substantially slower than the explicit version (2.13) that eliminates these time
derivatives using the leading-order approximation for ∂t u.

For the equations that yield explicit ODE systems under spatial discretization,
in other words everything except the original implicit PSM equation, a dedicated
ODE integrator like VODPK offered about 20% better performance than the DAE
integrator in the second set of experiments with random initial conditions. This is
because the timestep is controlled primarily by accuracy constraints on the leading-
order advection term, rather than by the stability of the diffusive terms.
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10. Conclusion
PSM derived equation (1.6) as an improved description of the evolution of the

vertically averaged horizontal velocity in a thin liquid-metal layer permeated by an
imposed vertical magnetic field. PSM’s equation improves the earlier equation (1.1)
derived by Sommeria & Moreau (1982) by including inertial corrections to the flow
in the Hartmann layers. These corrections appear as cubically nonlinear terms in
addition to the leading-order linear drag exerted by the Hartmann layers on the
core fluid. When written in terms of a streamfunction and vorticity as in (1.8), we
recognize many of the nonlinear terms in the PSM equation as being identical to terms
appearing in the anticipated vorticity and anticipated velocity methods. In particular,
the [ψ, [ψ, ω] ] term from the anticipated vorticity method that is responsible for
anisotropic diffusion of vorticity along streamlines is common to all three equations.
This is the only extra term involving second derivatives of the vorticity, so it dominates
the behaviour at high wavenumbers as seen in the evolution of the enstrophy and
palinstrophy.

In the original PSM equation, the nonlinear diffusion of vorticity along streamlines
is suppressed at high wavenumbers by the ∂t [ψ, ω] term that contains mixed spatio-
temporal derivatives (Benjamin et al. 1972). This causes the decay rate of short-wave
perturbations to saturate at a finite value, as shown in figure 2, rather than growing
indefinitely in proportion to the wavenumber squared. The implicit property of
the PSM equation offers no serious obstacle to obtaining numerical solutions via
the formulation as a differential-algebraic system presented above. The numerical
solutions have been verified by recovering the correct phase speeds and decay rates of
linear waves, and by comparison with solutions obtained independently from the small
Mach number limit of the compressible anticipated velocity method using a lattice
Boltzmann formulation (Dellar 2004). However, for realistic parameter values the
implicit terms only become significant at extremely high horizontal wavenumbers, with
k� = O(NHa/δ) � 1 for a domain of width �. These are far beyond the validity of the
shallow-layer approximation, so we may replace the original PSM equation by the fully
explicit equation given in (2.13). This equation was derived by eliminating the time
derivatives in ∂t [ψ, ω] using the leading-order approximation ∂tω+[ψ, ω] = κ(ω0 −ω).
This explicit equation is much less computationally expensive than the original
PSM equation, and provides virtually indistinguishable results for the parameter
values relevant to laboratory experiments, and in the numerical experiments presented
above.

The numerical experiments suggest that the qualitative behaviour of the PSM
equation, in either implicit or explicit form, is much closer to the anticipated velocity
method (Benzi et al. 1990, 1992; Dellar 2004) than the anticipated vorticity method.
The PSM equation and the anticipated velocity method both contain the additional
nonlinear terms [ψy, ωψx] and [ωψy, ψx]. These terms lead to additional dissipation
of energy, even without viscosity, as calculated in § 5. Although there is no simple
expression for the energy dissipation rate in either the implicit or explicit forms of
the PSM equation, we derived upper and lower bounds for the energy dissipation
rate under the explicit PSM equation in § 5. The [ψy, ωψx] and [ωψy, ψx] terms are
also responsible for spreading vortex patches, and represent the effects of Ekman
pumping in the Hartmann layers on the vertically averaged flow. In a coherent
vortex, Ekman pumping causes an enhanced radial inflow of fluid in the Hartmann
layers. Incompressibility therefore requires a compensating outflow within the core.
The leading-order horizontal velocity, and thus the vertical vorticity ωz = ∂xuy − ∂yux ,
are both larger in the core than in the Hartmann layers (see figure 1), so the Ekman
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pumping drives a net outward transport of vorticity, despite there being no radial
component to the vertically averaged horizontal velocity.

From the same realization of random initial conditions, the PSM equation and the
anticipated velocity method both develop flows that look far more “self-organized”
than either the Navier–Stokes equations or the anticipated vorticity method at the
same time, as shown in figures 6 and 7. In particular, large and nearly axisymmetric
vortices form much more readily in the PSM and anticipated velocity equations. The
tendency towards axisymmetry is accelerated by the [ψ, [ψ, ω] ] term that diffuses
vorticity along streamlines, while the [ψy, ωψx] and [ωψy, ψx] terms cause outward
expansion of curved streamlines. The parameters used in the numerical experiments
are reasonably representative of laboratory experiments, although both dimensionless
diffusivities β and ν are about ten times too large, and ν is perhaps relatively small
compared with β . It therefore seems plausible that the self-organization into large
coherent vortices seen by Sommeria (1986, 1988), or the merging of many small
vortices created by a Kelvin–Helmholtz instability into a few large vortices seen by
Alboussière et al. (1999), may be attributed at least partially to the additional effects
described by the PSM equation, and not entirely to the self-organizing behaviour
of the pure two-dimensional Navier–Stokes equations. The vortex merging seen by
Messadek & Moreau (2002) may also be due to the same mechanism, although the
Hartmann layers in their experiments were almost certainly turbulent, and thus not
described by the PSM equation.

The numerical experiments were conducted in a doubly periodic domain for
simplicity, but the approach used could be extended to finite domains. It is perhaps
easiest to retain the streamfunction–vorticity formulation, and impose two boundary
conditions on the streamfunction ψ and its normal derivative n · ∇ψ . Alternatively, the
incompressible Navier–Stokes equations in velocity–pressure form may be formulated
as a system of differential-algebraic equations (DAEs) using the Galerkin finite
element method. Incompressibility is enforced by a series of algebraic constraints
(Gresho & Sani 2000). This formulation should extend easily to include the extra
spatio-temporal derivatives of the velocity appearing in equation (1.6). The omitted
forcing and drag terms would also be easy to incorporate.

Finally, the formation of vortex patches is reminiscent of the Prandtl–Batchelor
theorem (Batchelor 1956) predicting the homogenization of vorticity inside regions of
closed streamlines for steady flows in the large Reynolds number limit. Although the
theorem strictly applies only to steady flows, it is found to give a good description
of some unsteady flows such as the von Kármán vortex street created in flow past
a circular cylinder (Davidson 2001; Matsuura & Yamagata 1985). The vortices in
the street behind the cylinder are found to be made up of patches of nearly uniform
vorticity, even though the flow is unsteady. In a geophysical context, Rhines & Young
(1982) predicted the formation of constant-potential-vorticity patches in unsteady
rotating flows, provided either the time-averaged streamlines or the mean potential
vorticity isolines are closed. The qualitative behaviour of solutions of the PSM
equation, with the large patches of almost uniform vorticity seen in figures 5 and 7,
is thus similar to what one might expect from the long-time and nearly inviscid
limit of the two-dimensional Navier–Stokes equations, but the tendency towards
homogenization of vorticity is caused by Ekman pumping in the boundary layers,
rather than directly by horizontal viscous diffusion. It would be interesting to extend
the numerical solutions to include the algebraic forcing and drag terms, and compare
the outcome with the modified Prandtl–Batchelor theorem obtained by Yamagata &
Matsuura (1981) that includes dissipation through both drag and viscosity, and with
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the laboratory experiments of Frank et al. (2001) for quasi-two-dimensional MHD
flow past a cylinder.

The author thanks Jeff Dewynne for useful conversations, and for supplying the
concrete example with increasing enstrophy. Kseniya Arsentieva kindly translated
the paper by Kolesnikov & Tsinober (1974). Financial support from the Glasstone
Benefaction at the University of Oxford is gratefully acknowledged.
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